BCA Protein Quantification Kit BCA蛋白浓度测定试剂盒(增强型)
产品货号
产品规格
是否有现货
价格
下单数量
操作
20201ES76
500T(100ml)
现货
¥ 278.00
加入购物车
20201ES86
2500T(500ml)
现货
¥ 778.00
加入购物车
20201ES90
5000T(1000ml)
现货
¥ 1518.00
加入购物车
产品详情
FAQ
产品文档
已发表文献
相关应用
相关产品
产品详情
产品介绍

BCA(Bicinchoninic acid)法是目前应用比较广泛的蛋白质浓度测定方法。基于双缩脲反应,即在碱性环境下蛋白质将Cu2+还原成Cu+,产生一种紫蓝色复合物,在562 nm处有高的吸光值,该反应产物的量与蛋白质浓度成正比。BCA蛋白浓度测定法实现了蛋白质浓度测定的简便、灵敏、快速和稳定性。试剂盒中提供的蛋白标准品为用户制作标准曲线提供了便利。

该BCA蛋白浓度测定试剂盒可用于比色皿法检测,也可用于微孔板法检测。前者虽需较大量(100 μL)的蛋白样品,但由于其在检测中使用蛋白样品与BCA工作液的比率为1:20(v/v),从而降低干扰物质带来的影响。后者操作简单方便,仅需少量(10-25 μL)的蛋白样品。不过,由于其在检测中使用蛋白样品与BCA工作液的比率为1:8(v/v),某种程度上限制干扰物质的承受浓度以及降低最低检测水平。我司提供三种规格的BCA蛋白浓度检测试剂盒,比色皿法分别可做50次,250次,500次。酶标法分别可做500次,2500次,以及5000次。

太阳成集团为您提供Western Blot实验整体解决方案,相关产品选购请参考:WB实验系列产品-选购指南

产品组分信息

类别组分编号组分名称20201ES76(500 T)20201ES86(2500 T)20201ES90(5000 T)储存
Part Ⅰ20201-ABCA试剂A100 mL500 mL2×500 mL室温
20201-BBCA试剂B3 mL15 mL2×15 mL室温
Part Ⅱ20201-C蛋白标准品(BSA)5×1 mL(2 mg/mL)10×1 mL(2 mg/mL)10×2 mL(2mg/mL)-25~-15℃


产品特色
  1. 灵敏度高,最小检测蛋白量可达0.2 μg,检测浓度下限达到10 μg/mL。
  2. 速度快,比一般的BCA蛋白浓度测定试剂盒显色所用时间短。比传统的Lowry法检测速度约快4倍。
  3. 线性范围广,20-2000 μg/mL浓度范围内有较好的线性范围。
  4. 不受大部分样品中的化学物质的影响,详情见附表1。
存储条件

Part Ⅰ中的BCA试剂A、BCA试剂B室温保存;Part Ⅱ中的蛋白标准品(BSA)长时间不用,可置于-25~-15℃保存,有效期1年。

FAQ

Q:产品有沉淀怎么办?

A:请 37ºC 温育并伴随搅拌促使其充分溶解。如发现细菌污染,则应丢弃,避免对实验结果造成影响。

Q:请问BCA 蛋白浓度测定时,待测样品是水溶液,可否用纯水直接溶解 BSA 蛋白标准品,而不用试剂盒里的 BSA 蛋白标准配制液?

A:BSA 溶解还是需要使用试剂盒自带的蛋白标准配制液,后续标准品的稀释可以使用水。

Q:该蛋白标准品 BSA 用什么稀释?

A:标准品稀释液为蛋白样品的溶解液,原则上,蛋白样品在什么溶液中,标准品也宜用什么溶液稀释。但也可用 0.9%的NaCl 或 1×PBS 进行稀释。

Q:试剂盒中的BSA 标准品可以另外购买吗?

A:可以的,我们公司提供有单独的 BSA 标准品(货号 36101)。

Q:每次测定时都需要做标准曲线吗?

A:是的,建议每次测定时都做标准曲线。因为BCA法测定时颜色会随着时间的延长不断加深,并且显色反应的速度和温度有关,所以除非精确控制显色反应的时间和温度,否则如需精确测定宜每次都做标准曲线。

产品文档
COA
已发表文献
  1. Chen P, Wang W, Liu R, et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature. 2022;606(7914):550-556. doi:10.1038/s41586-022-04719-9(IF:49.962)
  2. Miao Z, Li J, Wang Y, et al. Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC Axis and PD-L1 phosphorylation. Mol Cancer. 2023;22(1):205. Published 2023 Dec 13. doi:10.1186/s12943-023-01883-y (IF:37.3)
  3. Liu Y, Liu Q, Zhao L, et al. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1. J Extracell Vesicles. 2022;11(4):e12212. doi:10.1002/jev2.12212(IF:25.841)
  4. Liang J, Bi G, Huang Y, et al. MAFF confers vulnerability to cisplatin-based and ionizing radiation treatments by modulating ferroptosis and cell cycle progression in lung adenocarcinoma. Drug Resist Updat. 2024;73:101057. doi:10.1016/j.drup.2024.101057 (IF:24.3)
  5. Xiao Y, Ma D, Yang YS, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022;32(5):477-490. doi:10.1038/s41422-022-00614-0(IF:25.617)
  6. Li Y, Hu C, Zhai P, et al. Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury. Kidney Int. 2024;105(3):508-523. doi:10.1016/j.kint.2023.12.007(IF:19.6)
  7. Zhang Q, Shi D, Guo M, Zhao H, Zhao Y, Yang X. Radiofrequency-Activated Pyroptosis of Bi-Valent Gold Nanocluster for Cancer Immunotherapy. ACS Nano. 2023;17(1):515-529. doi:10.1021/acsnano.2c09242(IF:17.1)
  8. Wang H, Shan X, Ren M, Shang M, Zhou C. Nucleosomes enter cells by clathrin- and caveolin-dependent endocytosis. Nucleic Acids Res. 2021;49(21):12306-12319. doi:10.1093/nar/gkab1121(IF:16.971)
  9. Dai W, Tian R, Yu L, et al. Overcoming therapeutic resistance in oncolytic herpes virotherapy by targeting IGF2BP3-induced NETosis in malignant glioma. Nat Commun. 2024;15(1):131. Published 2024 Jan 2 doi:10.1038/s41467-023-44576-2.(IF:16.6)
  10. Hu X, Wang L, Wang Y, et al. RNF126-Mediated Reubiquitination Is Required for Proteasomal Degradation of p97-Extracted Membrane Proteins. Mol Cell. 2020;79(2):320-331.e9. doi:10.1016/j.molcel.2020.06.023(IF:15.584)
  11. Yang M, Zheng X, Fan J, et al. Antibiotic-Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m6A Epitranscriptome via Bile Acid Metabolism. Adv Sci (Weinh). Published online May 7, 2024. doi:10.1002/advs.202307981(IF:15.1)
  12. Lu X, Chen X, Lin C, et al. Elesclomol Loaded Copper Oxide Nanoplatform Triggers Cuproptosis to Enhance Antitumor Immunotherapy. Adv Sci (Weinh). 2024;11(18):e2309984. doi:10.1002/advs.202309984(IF:15.1)
  13. Li L, Zeng X, Chao Z, et al. Targeting Alpha-Ketoglutarate Disruption Overcomes Immunoevasion and Improves PD-1 Blockade Immunotherapy in Renal Cell Carcinoma. Adv Sci (Weinh). 2023;10(27):e2301975. doi:10.1002/advs.202301975(IF:15.1)
  14. Weng Q, Sun H, Fang C, et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat Commun. 2021;12(1):1436. Published 2021 Mar 4. doi:10.1038/s41467-021-21714-2(IF:14.919)
  15. Zhao H, Xu J, Huang W, et al. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano. 2019;13(6):6647-6661. doi:10.1021/acsnano.9b00972(IF:13.903)
  16. Weng Q, Hu X, Zheng J, et al. Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS Nano. 2019;13(6):6801-6812. doi:10.1021/acsnano.9b01511(IF:13.903)
  17. Liu C, Sun W, Zhu T, et al. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol. 2022;52:102292. doi:10.1016/j.redox.2022.102292(IF:11.799)
  18. Gao X, You J, Gong Y, et al. WSB1 regulates c-Myc expression through β-catenin signaling and forms a feedforward circuit. Acta Pharm Sin B. 2022;12(3):1225-1239. doi:10.1016/j.apsb.2021.10.021(IF:11.614)
  19. Hu Q, Jia L, Zhang X, Zhu A, Wang S, Xie X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm Sin B. 2022;12(1):394-405. doi:10.1016/j.apsb.2021.05.021(IF:11.614)
  20. Xu X, Shi Y, Luan P, et al. The subcellular redistribution of NLRC5 promotes angiogenesis via interacting with STAT3 in endothelial cells. Theranostics. 2021;11(9):4483-4501. Published 2021 Mar 4. doi:10.7150/thno.54473(IF:11.556)
  21. Yao C, Ni Z, Gong C, et al. Rocaglamide enhances NK cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy. Autophagy. 2018;14(10):1831-1844. doi:10.1080/15548627.2018.1489946(IF:11.100)
  22. Dou Y, Xie J, Tan Y, Zhang M, Zhao Y, Liu X. Neurotransmitter-stimulated neuron-derived sEVs have opposite effects on amyloid β-induced neuronal damage. J Nanobiotechnology. 2021;19(1):324. Published 2021 Oct 15. doi:10.1186/s12951-021-01070-5(IF:10.435)
购物车
客服
电话
咨询