MitoTracker® Deep Red FM 线粒体深红色荧光探针
产品货号
产品规格
是否有现货
价格
下单数量
操作
40743ES50
50µg
现货
¥ 449.00
加入购物车
产品详情
FAQ
产品文档
已发表文献
相关应用
相关产品
产品详情
产品介绍

MitoTracker® Deep Red FM是一种细胞渗透型的carbocyanine-based的深红外红色荧光探针(Ex=644 nm,Em=665 nm),包含标记线粒体的弱巯基反应性的氯甲基官能团,只需简单孵育细胞,即可被动运输穿过细胞膜并直接聚集在活性线粒体上。一旦线粒体被染色后,还能根据后续实验的需求进行固定(醛类固定剂如甲醛)和透化(醛类去污剂如Triton X-100),探针依然维持在细胞内。本品适合双标实验,因其红色荧光与其他的绿色荧光探针具有良好的分辨率。

虽然传统的线粒体荧光探针如TMR和罗丹明123,也能很容易的聚集在功能线粒体上,但是一旦线粒体膜电位丧失即会被洗掉,从而在一些需要细胞进行醛类固定或者包含线粒体能量状态影响因子的实验中,使其应用大受限制。

产品特色
CAS号(CAS NO.)N/A
分子式(Formula)C34H36Cl2N2
分子量(Molecular weight)543.58
外观(Appearance)Blue solid
激发波长(Ex)644 nm
发射波长(Em)665 nm
结构式(Structure)


存储条件

室温运输;-20℃避光干燥保存,有效期1年。

FAQ

Q:染色只能看到在细胞核周围有红色的弥散状,看不到线粒体的结构?

A:可能是探针浓度太高或者探针孵育后没有清洗干净,造成有非特异性染色。

Q:活细胞内直接做线粒体染色的试剂有哪些?

A:40740、40741、40742、40743 都可以。

Q:没有 HBSS 用什么缓冲液,加多少体积上流式?

A:可以使用 PBS 或是无血清培养基替代,添加体积足够做流式即可 100-200ul。

Q:染色结果可以使用多功能酶标仪观察吗?

A:可以,最好是使用荧光显微镜或是共聚焦显微镜、流式仪器。

Q:线粒体探针的保质期是多久?

A:按规定标准储存,保质期一年。

Q:线粒体探针可以染植物、细菌吗?

A:该系列探针是针对动物细胞开发的,对于植物或是原核生物,由于存在细胞壁因而染色较为困难不是很方便,没有做过相关验证。

Q:线粒体探针染色后可以过夜在进行观察荧光吗?

A:该探针染色后应在 1h 内完成观察并拍照,过夜会导致荧光的消失,建议染色后立即进行观察以保证荧光拍照的结果。

Q:该线粒体探针染色后的固定剂是否可以更换为甲醇?

A:可以的。染色完成后,如需对细胞样本进行固定,除说明书建议外还可以使用预冷的100%甲醇于-20℃固定15min。

产品文档
COA
已发表文献

[1] Fan XY, Guo L, Chen LN, et al. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng. 2022;6(4):339-350. doi:10.1038/s41551-022-00881-7(IF:25.671)

[2] Bai D, Du J, Bu X, et al. ALDOA maintains NLRP3 inflammasome activation by controlling AMPK activation. Autophagy. 2022;18(7):1673-1693. doi:10.1080/15548627.2021.1997051(IF:16.016)

[3] Ge X, Gao M, He B, et al. Rapid and high-throughput testing of antifungal susceptibility using an AIEgen-based analytical system [published online ahead of print, 2022 Jun 4]. Biomaterials. 2022;287:121618. doi:10.1016/j.biomaterials.2022.121618(IF:12.479)

[4] Liu C, Li L, Lyu J, et al. Split bullets loaded nanoparticles for amplified immunotherapy. J Control Release. 2022;347:199-210. doi:10.1016/j.jconrel.2022.05.011(IF:9.776)

[5] Liu K, Zhao Q, Liu P, et al. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy. 2016;12(11):2000-2008. doi:10.1080/15548627.2016.1212786(IF:9.108)

[6] Liu K, Zhao Q, Sun H, et al. BNIP3 (BCL2 interacting protein 3) regulates pluripotency by modulating mitochondrial homeostasis via mitophagy. Cell Death Dis. 2022;13(4):334. Published 2022 Apr 11. doi:10.1038/s41419-022-04795-9(IF:8.469)

[7] Liu Z, Xia X, Lv X, Song E, Song Y. Iron-bearing nanoparticles trigger human umbilical vein endothelial cells ferroptotic responses by promoting intracellular iron level. Environ Pollut. 2021;287:117345. doi:10.1016/j.envpol.2021.117345(IF:8.071)

[8] Lin C , Yang X , Li H , et al. Self-assembled nanomedicine combining a berberine derivative and doxorubicin for enhanced antitumor and antimetastatic efficacy via mitochondrial pathways. Nanoscale. 2021;13(13):6605-6623. doi:10.1039/d1nr00032b(IF:7.790)

[9] Zhou C, Li J, Du J, et al. HMGCS1 drives drug-resistance in acute myeloid leukemia through endoplasmic reticulum-UPR-mitochondria axis. Biomed Pharmacother. 2021;137:111378. doi:10.1016/j.biopha.2021.111378(IF:6.530)

[10] Hu S, Huang B, Pu Y, et al. A thermally activated delayed fluorescence photosensitizer for photodynamic therapy of oral squamous cell carcinoma under low laser intensity. J Mater Chem B. 2021;9(28):5645-5655. doi:10.1039/d1tb00719j(IF:6.331)

[11] Wu H, Wang J, Ma H, Xiao Z, Dong X. MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid. Oncotarget. 2017;8(54):92914-92925. Published 2017 Oct 6. doi:10.18632/oncotarget.21656(IF:5.168)

[12] Guo X, Lu D, Zhang D, et al. Curved corannulene dually targets mitochondria and endoplasmic reticulum, and initiates apoptosis via localized ROS induction upon light triggering. Mater Sci Eng C Mater Biol Appl. 2020;106:110227. doi:10.1016/j.msec.2019.110227(IF:4.959)

[13] Lv H, Hu L, Xu J, Bo T, Wang W. Identification and functional analysis of the mitochondrial cysteine synthase TtCsa2 from Tetrahymena thermophila. J Cell Biochem. 2021;122(12):1817-1831. doi:10.1002/jcb.30136(IF:4.429)

[14] Zhang X, Yan Q, Mulatihan DN, et al. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy. Nanotechnology. 2018;29(25):255101. doi:10.1088/1361-6528/aabbdb(IF:3.404)

[15] Zhu Y, Wang T, He S, et al. Comparison of Antiobesity Effects of Adipose-Derived Stromal/Stem Cells from Different Sources in a Natural Aging Model [published correction appears in Diabetes Metab Syndr Obes. 2022 Mar 01;15:671-672]. Diabetes Metab Syndr Obes. 2021;14:4535-4546. Published 2021 Nov 15. doi:10.2147/DMSO.S334044(IF:3.168)

[16] Wang J, Wu H, Zhou Y, et al. HIF-1α inhibits mitochondria-mediated apoptosis and improves the survival of human adipose-derived stem cells in ischemic microenvironments. J Plast Reconstr Aesthet Surg. 2021;74(8):1908-1918. doi:10.1016/j.bjps.2020.11.041(IF:2.390)

[17] Yang K, Wang N, Guo HT, et al. Effect of L-carnitine on sperm quality during liquid storage of boar semen. Asian-Australas J Anim Sci. 2020;33(11):1763-1769. doi:10.5713/ajas.19.0455(IF:1.227)

购物车
客服
电话
咨询