Hieff Mut™ Site-Directed Mutagenesis Kit 定点突变试剂盒
产品货号
产品规格
是否有现货
价格
下单数量
操作
11003ES10
10T
现货
¥ 720.00
加入购物车
产品详情
FAQ
产品文档
已发表文献
相关应用
相关产品
产品详情
产品介绍

Hieff Mut™ Site-Directed Mutagenesis Kit是基于Hieff Clone™快速克隆技术的定点突变系统。使用本试剂盒,目标质粒扩增产物经DpnI消化、Hieff Clone™重组环化后直接进行转化即可完成定点突变。该试剂盒由两个模块组成:Hieff® II Pfu DNA Polymerase扩增模块和Hieff Clone®快速克隆模块。Hieff® II Pfu DNA Polymerase超高的保真度显著降低了扩增过程中引入新突变的可能性,其卓越的长片段扩增能力,广泛适用于长度小于20 kb的任何质粒扩增。Hieff Clone®快速克隆系统利用高效的同源重组反应替代传统的退火成环反应。因此使用Hieff Mut™ Site-Directed Mutagenesis Kit进行DNA定点突变时,引物设计更加灵活,且扩增反应不再需要以线性方式进行,极大减少了模板使用量,有利于原始甲基化模板的彻底降解。Hieff Clone®技术可以高效完成两个PCR产物的无缝拼接,因此该试剂盒还能以单次扩增的方式对目标质粒上不连续的两个位点同时进行突变。

Hieff Mut™ Site-Directed Mutagenesis Kit中的重组酶Exnase经过优化,专门针对单碱基、不连续双碱基定点突变。此外,如扩增产物特异,其DpnI消化产物可不进行DNA纯化而直接用于重组反应。高度优化的反应缓冲液、快捷的操作流程以及极高的成功率,使得Hieff Mut™ Site-Directed Mutagenesis Kit成为DNA定点突变试剂盒。

产品特色
  • 专门针对单碱基、不连续双碱基定点突变
应用案例
  • 单碱基(或连续多碱基)定点突变实验方案

  • 不连续双碱基定点突变实验方案 (两突变位点相距超过50 bp)

存储条件

冰袋(wet ice)运输。产品-20℃保存。有效期1年。

FAQ

Q:定点突变克隆原理是什么?

A:基于同源重组技术的定点突变系统。使用本试剂盒,目标质粒扩增产物经 DpnI 消化 同源重组环化后直接进行转化即可完成定点突变。

Q:多点突变试剂盒与定点突变试剂盒有什么区别?

多点突变试剂盒可一步实现目标质粒上 3-5 个不连续位点的定点突变,而定点突变试剂盒是适合 1 或2 个不连续位点的定点突变。如:3 个连续的碱基突变算 1 个位点的突变,故定点突变试剂盒即可(相距超过 50 bp 为 1 个不连续位点)。

Q:点突变为什么要选择甲基化的载体?

A:点突变过程需要去除模板质粒,防止假阳性。利用的原理就是限制性内切酶 DpnI 能消化甲基化的模板,若是非甲基化,则无法去除模板。

Q:质粒反向扩增时引物如何设计?

A:正反向扩增引物 5’端包含至少 20 bp 反向互补区域,各引物非互补区域长度至少为 20 bp。互补区尽量选择无重复序列,GC 含量尽量在 40%-60%范围内。

Q:质粒模板的使用量?

A:在不影响扩增产物的情况下,尽可能少的量(建议<1ng),避免DpnI 消化不完全。

Q:DpnI 处理后要进行回收吗?

A:最好进行胶回收。未消化完全的质粒或其他非特异性条带会影响后续的重组反应。

Q:对于PCR 模板质粒什么要求?

A:PCR 模板应为甲基化质粒,应使用甲基化酶无缺陷型的宿主菌扩增原始质粒(如DH5α,TOP10, JM109 等)。应尽量使用新鲜制备的质粒作为模板,因长期放置,反复冻融可能会导致模板质粒断裂,开环或降解。

Q:适合多大的质粒模板进行突变?

A:小于 20 kb。质粒越大,其他非目的碱基的突变率越高,PCR 更难,重组效率更低。

产品文档
COA
已发表文献

[1] Li J, Glover JD, Zhang H, et al. Limb development genes underlie variation in human fingerprint patterns. Cell. 2022;185(1):95-112.e18. doi:10.1016/j.cell.2021.12.008(IF:41.584)

[2] Wang Y, Hu SB, Wang MR, et al. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat Cell Biol. 2018;20(10):1145-1158. doi:10.1038/s41556-018-0204-2(IF:19.064)

[3] Xu Y, Yu Q, Wang P, et al. A Selective Small-Molecule c-Myc Degrader Potently Regresses Lethal c-Myc Overexpressing Tumors. Adv Sci (Weinh). 2022;9(8):e2104344. doi:10.1002/advs.202104344(IF:16.806)

[4] Wu Y, Li C, Xia S, et al. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe. 2020;27(6):891-898.e5. doi:10.1016/j.chom.2020.04.023(IF:15.923)

[5] He X, Li Y, Chen Q, et al. O-GlcNAcylation and stablization of SIRT7 promote pancreatic cancer progression by blocking the SIRT7-REGγ interaction [published online ahead of print, 2022 Apr 14]. Cell Death Differ. 2022;10.1038/s41418-022-00984-3. doi:10.1038/s41418-022-00984-3(IF:15.828)

[6] Zou Y, Zheng S, Xie X, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022;13(1):2672. Published 2022 May 13. doi:10.1038/s41467-022-30217-7(IF:14.919)

[7] Liu Z, Xu W, Chen Z, et al. An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein Cell. 2022;13(9):655-675. doi:10.1007/s13238-021-00871-6(IF:14.870)

[8] Liu Z, Xu W, Xia S, et al. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct Target Ther. 2020;5(1):282. Published 2020 Nov 27. doi:10.1038/s41392-020-00402-5(IF:13.493)

[9] Liu G, Fu W, Zhang Z, et al. Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat Commun. 2018;9(1):4689. Published 2018 Nov 8. doi:10.1038/s41467-018-07093-1(IF:12.353)

[10] Luo P, Xu Z, Li G, et al. HMGB1 represses the anti-cancer activity of sunitinib by governing TP53 autophagic degradation via its nucleus-to-cytoplasm transport. Autophagy. 2018;14(12):2155-2170. doi:10.1080/15548627.2018.1501134(IF:11.100)

[11] Ma H, Zhang F, Zhou L, et al. c-Src facilitates tumorigenesis by phosphorylating and activating G6PD. Oncogene. 2021;40(14):2567-2580. doi:10.1038/s41388-021-01673-0(IF:9.867)

[12] Ji L, Qian W, Gui L, et al. Blockade of β-Catenin-Induced CCL28 Suppresses Gastric Cancer Progression via Inhibition of Treg Cell Infiltration. Cancer Res. 2020;80(10):2004-2016. doi:10.1158/0008-5472.CAN-19-3074(IF:9.727)

[13] Liu J, Liu MX, Qiu LP, Xie F. SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in Lotus japonicus. Plant Cell. 2020;32(12):3774-3791. doi:10.1105/tpc.20.00109(IF:9.618)

[14] Zhou Y, Liu Z, Li S, et al. Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 2021;34(5):108699. doi:10.1016/j.celrep.2021.108699(IF:9.423)

[15] Liu C, Zheng S, Gui J, et al. Shortened Basal Internodes Encodes a Gibberellin 2-Oxidase and Contributes to Lodging Resistance in Rice. Mol Plant. 2018;11(2):288-299. doi:10.1016/j.molp.2017.12.004(IF:8.827)

[16] Xu H, Jiang S, Yu C, Yuan Z, Sun L. GSDMEa-mediated pyroptosis is bi-directionally regulated by caspase and required for effective bacterial clearance in teleost. Cell Death Dis. 2022;13(5):491. Published 2022 May 24. doi:10.1038/s41419-022-04896-5(IF:8.469)

[17] Li H, Liu Q, Chen Z, et al. Hsa_circ_0110757 upregulates ITGA1 to facilitate temozolomide resistance in glioma by suppressing hsa-miR-1298-5p. Cell Death Dis. 2021;12(3):252. Published 2021 Mar 5. doi:10.1038/s41419-021-03533-x(IF:8.469)

[18] Xu WP, Cui YL, Chen LL, et al. Deletion of Sox9 in the liver leads to hepatic cystogenesis in mice by transcriptionally downregulating Sec63. J Pathol. 2021;254(1):57-69. doi:10.1002/path.5636(IF:7.996)

[19] Ding CH, Yin C, Chen SJ, et al. The HNF1α-regulated lncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1. Mol Cancer. 2018;17(1):63. Published 2018 Feb 21. doi:10.1186/s12943-018-0813-1(IF:7.776)

[20] Dong C, Liu Y, Lyu TJ, et al. Structural Basis for the Binding Selectivity of Human CDY Chromodomains. Cell Chem Biol. 2020;27(7):827-838.e7. doi:10.1016/j.chembiol.2020.05.007(IF:7.739)

[21] Zou G, Bao D, Wang Y, et al. Alleviating product inhibition of Trichoderma reesei cellulase complex with a product-activated mushroom endoglucanase. Bioresour Technol. 2021;319:124119. doi:10.1016/j.biortech.2020.124119(IF:7.539)

[22] Wang C, Zhang H, Fu J, et al. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog. 2021;17(1):e1009065. Published 2021 Jan 28. doi:10.1371/journal.ppat.1009065(IF:6.823)

[23] Fu X, Zhao R, Yoon G, et al. 3-Deoxysappanchalcone Inhibits Skin Cancer Proliferation by Regulating T-Lymphokine-Activated Killer Cell-Originated Protein Kinase in vitro and in vivo. Front Cell Dev Biol. 2021;9:638174. Published 2021 Mar 25. doi:10.3389/fcell.2021.638174(IF:6.684)

[24] Yang X, Li X, Zhong C, et al. Circular RNA circPHKA2 Relieves OGD-Induced Human Brain Microvascular Endothelial Cell Injuries through Competitively Binding miR-574-5p to Modulate SOD2. Oxid Med Cell Longev. 2021;2021:3823122. Published 2021 Nov 8. doi:10.1155/2021/3823122(IF:6.543)

[25] Wei W, Wang P, Wei Y, et al. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts. Mol Plant. 2015;8(9):1412-1424. doi:10.1016/j.molp.2015.05.010(IF:6.337)

[26] Wang Z, Xi J, Hao X, et al. Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum. Emerg Microbes Infect. 2017;6(8):e75. Published 2017 Aug 23. doi:10.1038/emi.2017.63(IF:6.212)

[27] Wu Y, Li S, Du L, et al. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III. Emerg Microbes Infect. 2017;6(10):e89. Published 2017 Oct 11. doi:10.1038/emi.2017.79(IF:6.212)

[28] Liu W, Sha Y, Li Y, et al. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet. 2019;56(10):678-684. doi:10.1136/jmedgenet-2018-105952(IF:5.899)

[29] Wang SW, Lan T, Chen HF, et al. Limonin, an AMPK Activator, Inhibits Hepatic Lipid Accumulation in High Fat Diet Fed Mice. Front Pharmacol. 2022;13:833705. Published 2022 Jan 24. doi:10.3389/fphar.2022.833705(IF:5.811)

[30] Hu F, Chen X, Gao J, Shen Y, Yang J. CircDIP2C ameliorates oxidized low-density lipoprotein-induced cell dysfunction by binding to miR-556-5p to induce TET2 in human umbilical vein endothelial cells. Vascul Pharmacol. 2021;139:106887. doi:10.1016/j.vph.2021.106887(IF:5.773)

[31] Song Z, Wang W, Li N, et al. Sphingosine kinase 2 promotes lipotoxicity in pancreatic β-cells and the progression of diabetes. FASEB J. 2019;33(3):3636-3646. doi:10.1096/fj.201801496R(IF:5.595)

[32] Wu R, Zhao M, Li J, Gao H, Kan B, Liang W. Direct regulation of the natural competence regulator gene tfoX by cyclic AMP (cAMP) and cAMP receptor protein (CRP) in Vibrios. Sci Rep. 2015;5:14921. Published 2015 Oct 7. doi:10.1038/srep14921(IF:5.578)

[33] Yang N, Xiong Y, Wang Y, et al. ADAP Y571 Phosphorylation Is Required to Prime STAT3 for Activation in TLR4-Stimulated Macrophages. J Immunol. 2021;206(4):814-826. doi:10.4049/jimmunol.2000569(IF:5.422)

[34] Jiang Y, Zhang M, Yu D, Hou G, Wu J, Li F. CircRBM33 downregulation inhibits hypoxia-induced glycolysis and promotes apoptosis of breast cancer cells via a microRNA-542-3p/HIF-1α axis. Cell Death Discov. 2022;8(1):126. Published 2022 Mar 22. doi:10.1038/s41420-022-00860-6(IF:5.241)

[35] Liu C, Yu H, Li L. SUMO modification of LBD30 by SIZ1 regulates secondary cell wall formation in Arabidopsis thaliana. PLoS Genet. 2019;15(1):e1007928. Published 2019 Jan 18. doi:10.1371/journal.pgen.1007928(IF:5.224)

[36] Jiang X, Wu Z, Lu X, et al. Activation of CaMKIIγ potentiates T-cell acute lymphoblastic leukemia leukemogenesis via phosphorylating FOXO3a. Oncotarget. 2017;8(43):75050-75064. Published 2017 Aug 24. doi:10.18632/oncotarget.20504(IF:5.168)

[37] Li W, Liu X, Qiao H. Downregulation of hippocampal SIRT6 activates AKT/CRMP2 signaling and ameliorates chronic stress-induced depression-like behavior in mice. Acta Pharmacol Sin. 2020;41(12):1557-1567. doi:10.1038/s41401-020-0387-5(IF:5.064)

[38] Ren S, Pan L, Yang L, et al. Interfering hsa_circ_0073748 alleviates caerulein-induced ductal cell injury in acute pancreatitis by inhibiting miR-132-3p/TRAF3/NF-κB pathway. Cell Cycle. 2022;21(2):172-186. doi:10.1080/15384101.2021.2014653(IF:4.534)

[39] Sun D, Cui S, Ma H, et al. Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury. J Ethnopharmacol. 2022;293:115331. doi:10.1016/j.jep.2022.115331(IF:4.360)

[40] Ma X, Zhu M, Liu J, et al. Interactions between PHD3-Bromo of MLL1 and H3K4me3 Revealed by Single-Molecule Magnetic Tweezers in a Parallel DNA Circuit. Bioconjug Chem. 2019;30(12):2998-3006. doi:10.1021/acs.bioconjchem.9b00665(IF:4.349)

[41] Jia W, Zou X, Xu Z, et al. Polypeptide N-acetylgalactosaminyltransferase 18 retains in endoplasmic reticulum depending on its luminal regions interacting with ER resident UGGT1, PLOD3 and LPCAT1. Glycobiology. 2021;31(8):947-958. doi:10.1093/glycob/cwab031(IF:4.313)

[42] Li B, Zhang L. CircSETDB1 knockdown inhibits the malignant progression of serous ovarian cancer through miR-129-3p-dependent regulation of MAP3K3. J Ovarian Res. 2021;14(1):160. Published 2021 Nov 17. doi:10.1186/s13048-021-00875-0(IF:4.234)

[43] Tan X, Wang P, Lou J, Zhao J. Knockdown of lncRNA NEAT1 suppresses hypoxia-induced migration, invasion and glycolysis in anaplastic thyroid carcinoma cells through regulation of miR-206 and miR-599. Cancer Cell Int. 2020;20:132. Published 2020 Apr 23. doi:10.1186/s12935-020-01222-x(IF:4.175)

[44] Bai Y, Lu J, Cheng Y, et al. NF-кB increases LPS-mediated procalcitonin production in human hepatocytes. Sci Rep. 2018;8(1):8913. Published 2018 Jun 11. doi:10.1038/s41598-018-27302-7(IF:4.122)

[45] He DX, Gu XT, Jiang L, Jin J, Ma X. A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Mol Pharmacol. 2014;86(5):536-547. doi:10.1124/mol.114.092759(IF:4.120)

[46] Ma G, Dai W, Zhang J, et al. ELK1‑mediated upregulation of lncRNA LBX2‑AS1 facilitates cell proliferation and invasion via regulating miR‑491‑5p/S100A11 axis in colorectal cancer. Int J Mol Med. 2021;48(1):138. doi:10.3892/ijmm.2021.4971(IF:4.101)

[47] Ma Y, Feng J, Xing X, et al. miR-1908 Overexpression Inhibits Proliferation, Changing Akt Activity and p53 Expression in Hypoxic NSCLC Cells. Oncol Res. 2016;24(1):9-15. doi:10.3727/096504016X14570992647168(IF:3.957)

[48] Wang J, Li J, Duan P, Dang Y, Shi T. Circ_0001588 Upregulates ERBB4 to Promote Glioma Malignant Progression Through Sponging miR-1281. Neurotox Res. 2022;40(1):89-102. doi:10.1007/s12640-021-00464-5(IF:3.911)

[49] Zhuang Z, Zhang L, Liu C. SNHG14 Upregulation Was a Molecular Mechanism Underlying MPP
+ Neurotoxicity in Dopaminergic SK-N-SH Cells via SNHG14-miR-519a-3p-ATG10 ceRNA Pathway. Neurotox Res. 2022;40(2):553-563. doi:10.1007/s12640-022-00488-5(IF:3.911)

[50] Hu X, Zhang X, Zhong J, et al. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis. Int J Biol Macromol. 2018;111:822-831. doi:10.1016/j.ijbiomac.2017.12.135(IF:3.909)

[51] Cao J, Yu U, Li L, et al. circKL inhibits the growth and metastasis of kidney cancer by sponging miR‑182‑5p and upregulating FBXW7. Oncol Rep. 2022;47(4):75. doi:10.3892/or.2022.8286(IF:3.906)

[52] Gao H, Ma H, Gao M, Chen A, Zha S, Yan J. Long non-coding RNA GAS5 aggravates myocardial depression in mice with sepsis via the microRNA-449b/HMGB1 axis and the NF-κB signaling pathway. Biosci Rep. 2021;41(4):BSR20201738. doi:10.1042/BSR20201738(IF:3.840)

[53] Wang Y, Wei C, Yang Y, et al. Hepatocyte nuclear factor-1β suppresses the stemness and migration of colorectal cancer cells through promoting miR-200b activity. Mol Carcinog. 2020;59(8):989-999. doi:10.1002/mc.23229(IF:3.825)

[54] Zhu H, Cao Y, Su W, et al. Enterovirus A71 VP1 Variation A289T Decreases the Central Nervous System Infectivity via Attenuation of Interactions between VP1 and Vimentin In Vitro and In Vivo. Viruses. 2019;11(5):467. Published 2019 May 22. doi:10.3390/v11050467(IF:3.811)

[55] Li J, Wan H, Zhang H, et al. Molecular recognition between bacterial phosphorothioate DNA and sulfur-binding domain (SBD): competition between the water cage and chalcogen-hydrophobic packet. Phys Chem Chem Phys. 2022;24(16):9176-9187. Published 2022 Apr 20. doi:10.1039/d2cp00291d(IF:3.676)

[56] Sun W, Sun L, Sun X, Ma S. Long non-coding RNA SNHG7 upregulates FGF9 to alleviate oxygen and glucose deprivation-induced neuron cell injury in a miR-134-5p-dependent manner. Metab Brain Dis. 2021;36(8):2483-2494. doi:10.1007/s11011-021-00852-y(IF:3.584)

[57] Chen W, Yu X, Wang N, Jing J, Li R, Lian M. Circ_RPPH1 regulates glioma cell malignancy by binding to miR-627-5p/miR-663a to induce SDC1 expression. Metab Brain Dis. 2022;37(4):1231-1245. doi:10.1007/s11011-022-00965-y(IF:3.584)

[58] Li R, Hou S, Zou M, Ye K, Xiang L. miR-543 impairs cell proliferation, migration, and invasion in breast cancer by suppressing VCAN. Biochem Biophys Res Commun. 2021;570:191-198. doi:10.1016/j.bbrc.2021.07.005(IF:3.575)

[59] Ma J, Li Q, Li Y. CircRNA PRH1-PRR4 stimulates RAB3D to regulate the malignant progression of NSCLC by sponging miR-877-5p. Thorac Cancer. 2022;13(5):690-701. doi:10.1111/1759-7714.14264(IF:3.500)

[60] Chen HY, Gao LT, Yuan JQ, et al. Decrease in SHP-1 enhances myometrium remodeling via FAK activation leading to labor. Am J Physiol Endocrinol Metab. 2020;318(6):E930-E942. doi:10.1152/ajpendo.00068.2020(IF:3.469)

[61] Xing H, Zou G, Liu C, et al. Improving the thermostability of a GH11 xylanase by directed evolution and rational design guided by B-factor analysis. Enzyme Microb Technol. 2021;143:109720. doi:10.1016/j.enzmictec.2020.109720(IF:3.448)

[62] Wan S, Liu Z, Chen Y, et al. MicroRNA-140-3p represses the proliferation, migration, invasion and angiogenesis of lung adenocarcinoma cells via targeting TYMS (thymidylate synthetase). Bioengineered. 2021;12(2):11959-11977. doi:10.1080/21655979.2021.2009422(IF:3.269)

[63] Tang J, Wang R, Tang R, Gu P, Han J, Huang W. CircRTN4IP1 regulates the malignant progression of intrahepatic cholangiocarcinoma by sponging miR-541-5p to induce HIF1A production. Pathol Res Pract. 2022;230:153732. doi:10.1016/j.prp.2021.153732(IF:3.250)

[64] Cheng Y, Ma J, Liu Y, et al. Chicken TBK1 interacts with STING and is involved in IFN-β signaling regulation. Dev Comp Immunol. 2017;77:200-209. doi:10.1016/j.dci.2017.08.011(IF:3.218)

[65] Lu J, Guo JH, Tu XL, et al. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts. PLoS One. 2016;11(8):e0159998. Published 2016 Aug 3. doi:10.1371/journal.pone.0159998(IF:3.057)

[66] Yan L, Liu G, Cao H, Zhang H, Shao F. Hsa_circ_0035483 sponges hsa-miR-335 to promote the gemcitabine-resistance of human renal cancer cells by autophagy regulation. Biochem Biophys Res Commun. 2019;519(1):172-178. doi:10.1016/j.bbrc.2019.08.093(IF:2.705)

[67] Yang M, He X, Huang X, Wang J, He Y, Wei L. LncRNA MIR4435-2HG-mediated upregulation of TGF-β1 promotes migration and proliferation of nonsmall cell lung cancer cells. Environ Toxicol. 2020;35(5):582-590. doi:10.1002/tox.22893(IF:2.649)

[68] Li K, Zhao B, Wei D, et al. Long non-coding RNA ANRIL enhances mitochondrial function of hepatocellular carcinoma by regulating the MiR-199a-5p/ARL2 axis. Environ Toxicol. 2020;35(3):313-321. doi:10.1002/tox.22867(IF:2.649)

[69] Kang M, Shi J, Peng N, He S. MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA. Onco Targets Ther. 2017;10:5667-5675. Published 2017 Nov 28. doi:10.2147/OTT.S143084(IF:2.612)

[70] Li W, Fang J, Shen J, et al. MicroRNA-135a-5p promotes neuronal differentiation of pluripotent embryonal carcinoma cells by repressing Sox6/CD44 pathway. Biochem Biophys Res Commun. 2019;509(2):603-610. doi:10.1016/j.bbrc.2018.12.162(IF:2.559)

[71] Yang M, Huang W, Yang F, Zhang T, Wang C, Song Y. Fam83h mutation inhibits the mineralization in ameloblasts by activating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2018;501(1):206-211. doi:10.1016/j.bbrc.2018.04.216(IF:2.559)

[72] Li K, Lv C, Zhang W, Fang J. CircFN1 upregulation initiated oxidative stress-induced apoptosis and inhibition of proliferation and migration in trophoblasts via circFN1-miR-19a/b-3p-ATF2 ceRNA network. Reprod Biol. 2022;22(2):100631. doi:10.1016/j.repbio.2022.100631(IF:2.376)

[73] Wang Y, Liu Q, Zhang H. Phosphorylation of CREB-Specific Coactivator CRTC2 at Ser238 Promotes Proliferation, Migration, and Invasion of Colorectal Cancer Cells. Technol Cancer Res Treat. 2020;19:1533033820962111. doi:10.1177/1533033820962111(IF:2.074)

[74] Su S, Lu W, Liu J, et al. Circ_0007031 Silencing Inhibits Cell Proliferation and Induces Cell Apoptosis via Downregulating MELK at a miR-485-3p-Dependent Way in Colorectal Cancer. Biochem Genet. 2022;60(2):576-597. doi:10.1007/s10528-021-10111-5(IF:1.890)

[75] Wang M. miR‑433 protects pancreatic β cell growth in high‑glucose conditions. Mol Med Rep. 2017;16(3):2604-2610. doi:10.3892/mmr.2017.6925(IF:1.692)

购物车
客服
电话
咨询